Фолдинг белка биохимия. Сворачивание белка. Это может происходить

Аминокислотная последовательность не является единственным фактором, определяющим форму белковой молекулы. В клетке существуют специальные молекулы, которые активно участвуют в фолдинге белков.

В совокупности молекулы, участвующие в фолдинге белков, называют регуляторами фолдинга, среди которых выделяют несколько типов. Молекулы, ускоряющие фолдинг, называются катализаторами фолдинга . Молекулы, служащие для изменения формы белка, - шаперонами фолдинга . Существует четыре типа молекул, которые играют роль таких шаперонов .

1. Молекулы, обеспечивающие правильный фолдинг белков (фолдинг-шапероны - folding chaperones).

2. Молекулы, созданные для удержания частично свернутой молекулы белка в определенном положении. Это необходимо, чтобы система имела возможность закончить фолдинг (удерживающие шапероны - holding chaperones).

3. Шапероны, разворачивающие белки с неправильной формой (дезагрегирующие шапероны - disaggregating chaperones).

4. Шапероны, сопровождающие белки, транспортируемые через клеточную мембрану (секреторные шапероны - secretory chaperons).

Фолдинг шапероны помогают белку принять правильную конформацию. Многие из них являются небольшими сахарами или пептидами. Представьте себе сборочную линию на производстве. Пока изделие перемещается по сборочной линии, вы можете вставлять в него некоторые временные приспособления, например скобы и заклепки, чтобы поддерживать определенную форму на протяжении нескольких этапов сборки. По окончании этих этапов удерживающие устройства можно удалить. На следующих этапах сборки вам могут понадобиться дополнительные удерживающие приспособления, которые будут удалены на выходе готового изделия. Небольшие по размеру молекулы фолдинг-шаперонов выступают в роли скоб и заклепок в сборочной линии, поддерживая изделие в правильной конфигурации, необходимой для завершения следующего этапа. Если белки приняли неправильную форму, они не будут выполнять свойственную им функцию или же будут накапливаться в виде нерастворимых агрегатов, известных под названием включений.

Внутри клетки содержится большое количество воды. Молекулы, находящиеся в ней, обычно заряжены, то есть являются гидрофильными. Незаряженные молекулы, как мы помним, гидрофобны. В длинной, линейной последовательности белка имеются гидрофильные участки, а также гидрофобные области. В водной среде клетки гидрофобные поверхности белка стремятся оказаться внутри белковой молекулы, выставляя гидрофильные участки наружу, где они могут взаимодействовать с молекулами воды. Функция небольших молекул фолдинг-шаперонов заключается во взаимодействии с гидрофобными поверхностями белка, заряжая их или, напротив, прикрывая заряженные области, что позволяет белку принять правильную форму. Путем добавления и удаления этих молекул клетка определяет, когда и каким образом гидрофобный участок белка окажется внутри белковой молекулы. Тем самым определяется форма белка (рис. 8.6).

Рис. 8.6. Влияние шаперонов

Удерживающие шапероны связываются с белками, играя роль своеобразного резервуара этих белков до тех пор, пока фолдинг-шапероны не освобождаются и не начинают работу с этими белками. Удерживающие шапероны поддерживают белки в условиях химического и теплового напряжения до тех пор, пока условия внутри клетки не станут более благоприятными для правильного фолдинга белка. Это один из механизмов, который использует клетка для предотвращения неправильного фолдинга. Другой механизм связан с функционированием дезагрегирующих шаперонов. Дезагрегирующие шапероны осуществляют рефолдинг белков, фолдинг которых был выполнен неправильно. Они осуществляют в клетке важную контролирующую функцию по сбору и утилизации вторичного сырья. Несмотря на существование этих механизмов, определенный процент клеточных белков все же попадает в мусорную кучу, то есть образует нерастворимые включения. Включения видны в клетке в виде небольших плотных скоплений.

Одна из характерных черт шаперонов, которую вы нашли бы особенно важной, заключается в том, что они являются относительно неспецифичными. Иными словами, молекула шаперона будет осуществлять фолдинг более чем одного белка. Исследователи, изучающие причины неправильного фолдинга белков, случайно обнаружили в поврежденных клетках молекулы, сходные по структуре с шаперонами. Они нашли молекулы, которые исправляют последствия неправильного фолдинга белков. Исходя из универсальной природы шаперонов, вы можете вводить различные шапероны в биоинженерную систему и влиять на правильный фолдинг белка в среде, где он бы иначе не происходил. Создание специализированных шаперонов, ответственных за фолдинг рекомбинантных (биоинженерных) белков, - очень активно развивающаяся область биоинженерных исследований.

Белок можно подвергнуть фолдингу более одного раза. Представим себе белок, который предназначен для поступления в клеточную мембрану, то есть представляет собой интегральный мембранный белок. Белок образуется в цитоплазме клетки, а затем транспортируется по направлению к плазматической мембране. Такие белки проходят сквозь мембрану, закрепляются в ней и формируют на ее поверхности рецепторную структуру. Для транспорта белка может быть необходима одна его конформация, в то время как непосредственно перед встраиванием в мембрану белок подвергается рефолдингу.

В периплазматическом пространстве, то есть в пространстве между мембраной и оболочкой бактериальной клетки, находятся шапероны, обеспечивающие фолдинг и встраивание в мембрану интегральных мембранных белков. В эукариотических клетках большинство из посттрансляционных изменений белков направлено на их экспорт и встраивание внутрь плазматической мембраны. Такие модификации белков происходят в люмене эндоплазматического ретикулума и аппарате Гольджи. Эти органеллы предназначены для хранения и видоизменения белков.

В секреции белков из клетки участвует другая контролирующая система, которая включает секреторные шапероны . Секреторные шапероны узнают сигнальную последовательность аминокислот, которую соответственно называют секреторной последовательностью. Эта последовательность связывается с секреторным шапероном, шаперон поступает внутрь мембраны, обеспечивая экспорт белка вместе с собой.

фолдинг и тд "фолдинг белков - Процесс сворачивания полипептидной цепи в правильную пространственную структуру. Индивидуальные белки, продукты одного гена, имеют идентичную аминокислотную последовательность и приобретают в одинаковых условиях клетки одинаковую конформацию и функцию. для многих белков, имеющих сложную пространственную структуру, фолдинг протекает при участии "шаперонов"

Ренативация рибонуклеазы. процесс денатурации белков может быть обратимым. Это открытие было сделано при изучении денатурации рибонуклеазы - расщепляющего связи между нуклеотидами в РНК. Рибонуклеаза - глобулярный белок, содержащий одну полипептидную цепь, состоящую из 124 аминокислотных остатков. Его конформацию стабилизируют 4 дисульфидные и множество слабых связей.

Обработка рибонуклеазы меркаптоэтанолом приводит к разрыву дисульфидных связей и восстановлению SH-групп цистеиновых остатков, что нарушает компактную структуру белка. Добавление мочевины или гуанидинхлорвдаиприводит к образованию случайным образом свёрнутых полипептидных цепей рибонуклеазы, лишённых. денатурации фермента. если путём диализа очистить рибонуклеазу от денатурирующих агентов и меркаптоэтанола, ферментативная активность белка постепенно восстанавливается. Этот процесс называется ренатурацией

Возможность ренативации доказана и для других белков. необходимое условие для восстановления его конформации - целостность первичной структуры белка.

белки, способные связываться с белками, находящимися в неустойчивом, склонном к агрегации состоянии,способные стабилизировать их конформацию, обеспечивая фолдинг белков получили название "шапероны".

Роль шаперонов в фолдинге белков

в период синтеза белка на рибосоме защиту реакционно-способных радикалов осуществляют Ш-70.Фолдинг многих высокомолекулярных белков, имеющих сложную конформацию осуществляется в пространстве, сформированном Ш-60. Ш-60 функционируют в виде олигомернoго комплекса, состоящего из 14 субъединиц. Шапероновый комплекс имеет высокое сродство к белкам, на поверхности которых есть участки, обогащённые гидрофобными радикалами). Попадая в полость шаперонового комплекса, белок связывается с гидрофобными радикалами апикальных участков Ш-60.

Роль шаперонов в защите белков клеток от денатурирующих стрессовых воздействий

Шапероны, участвующие в защите клеточных белков от денатурирующих воздействий, относят к белкам теплового шока.При действии (высокая температура, гипоксия, инфекция, УФО, изменение рН среды, изменение молярности среды, действие токсичных химических веществ, тяжёлых металлов) в клетках усиливается синтез БТШ. они могут препятствовать их полной денатурации и восстанавливать нативную конформацию белков.

Болезни, связанные с нарушением

фолдинга белков Болезнь Альцхаймера - амилоидоз нервной системы, поражающий лиц преклонного возраста и характеризующийся прогрессирующим расстройством памяти и полной деградацией личности. В ткани мозга откладывается амилоид - белок, образующий нерастворимые фибриллы, нарушающие структуру и функции нервных клеток.

Прионовые белки особый класс белков, обладающих инфекционными свойствами. Попадая в организм человека, они способны вызывать тяжёлые неизлечимые заболевания ЦНС, называемые прионовыми болезнями. Прионовый белок кодируется тем же геном, что и его нормальный аналог, т.е. они имеют идентичную первичную структуру. Однако два белка обладают различной конформацией: прионовый белок характеризуется высоким содержанием?-слоёв, в то время как нормальный белок имеет много спиральных участков. прионовый белок обладает устойчивостью к действию протеаз.

nature - природа) - термин биологической химии , означающий потерю белковыми веществами их естественных свойств (растворимости , гидрофильности и др.) вследствие нарушения пространственной структуры их молекул .

Процесс денатурации отдельной белковой молекулы, приводящий к распаду её «жёсткой» трёхмерной структуры, иногда называют плавлением молекулы.

Механизмы денатурации

Практически любое заметное изменение внешних условий, например, нагревание или обработка белка кислотой приводит к последовательному нарушению четвертичной, третичной и вторичной структур белка. Обычно денатурация вызывается повышением температуры, действием сильных кислот и щелочей, солей тяжелых металлов, некоторых растворителей (спирт), радиации и др.

Денатурация часто приводит к тому, что в коллоидном растворе белковых молекул происходит процесс агрегации частиц белка в более крупные. Визуально это выглядит, например, как образование «белка» при жарке яиц.

Ренатурация

Ренатурация - процесс, обратный денатурации, при котором белки возвращают свою природную структуру. Нужно отметить, что не все белки способны ренатурировать; у большинства белков денатурация необратима.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Сворачивание белка" в других словарях:

    Белок до и после сворачивания Сворачивание белка процесс, аналогичный денатурации белка: в коллоидном растворе белковых молекул под действием внешних воздействий происходит процесс агрегации частиц белка в более крупные. Визуально это выглядит,… … Википедия

    Это слово может иметь следующие значения: Сворачивание (программное обеспечение) одна из функций текстового редактора. В биологической химии: Фолдинг белка (англ. folding сворачивание) процесс формирования пространственной структуры… … Википедия

    Кристаллы различных белков, выращенные на космической станции «Мир» и во время полётов шаттлов НАСА. Высокоочищенные белки при низкой температуре образуют кристаллы, которые используют для получения модели данного белка. Белки (протеины,… … Википедия

    Полимер - (Polymer) Определение полимера, виды полимеризации, синтетические полимеры Информация об определении полимера, виды полимеризации, синтетические полимеры Содержание Содержание Определение Историческая справка Наука о Полимеризация Виды… … Энциклопедия инвестора

    Типа Cys2His2 включает альфа спираль и антипараллельную бета структуру. Ион цинка связан кооординационными связями с 2 остатками гистидина и 2 остатками ци … Википедия

    Диаграмма двух параллельных белковых альфа спиралей лейциновой застёжки (вид с торца). Лейцин показан как d … Википедия

    - (англ. protein sorting, protein targeting) процессы мечения и последующего транспорта белков в живых клетках, которые приводят к попаданию белков в определенные компартменты клетки. Синтезируемые в цитоплазме на рибосомах белки должны… … Википедия

    В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

    - (от лат. translatio передача), программируемый генами процесс синтеза белка. Посредством Т. осуществляется реализация генетич. информации нуклеиновых к т (см. Генетический код). По совр. представлениям, исходный ген в виде ДНК непосредственно… … Химическая энциклопедия

Книги

  • Проблема сворачивания белка. Учебное пособие , Бен-Наим Арье. Проблема сворачивания (фолдинга) белка еще не имеет общепризнанного окончательного решения. В связи с этим данная проблема вызывает интерес исследователей по всему миру. В своей работе автор…

Первичная структура белка формируется в результате трансляции белка. По окончании трансляции процесс образования белка не завер- шается. Пептидная цепь претерпевает пространственные изменения, приводящие к ее сворачиванию в правильную трехмерную структуру. Этот процесс является следующим этапом формирования белка и назы- вается фолдингом. Фолдинг включает процессы образования вторичной, третичной и четвертичной структур белка. Фолдинг совершается не одномоментно, а в несколько стадий. Согласно схеме, предложенной О.Б. Птициным (1972г.) он включает следующие этапы:

Случайный белок – пептидная цепь в первичной структуре сразу после трансляции свернута в рыхлый клубок. Все связи между аминокислотными остатками (кроме пептидной) отсутствуют. Такая цепь обладает эластичностью: растягивание ее требует приложения силы, после завершения действия силы цепь возвращается в состоянии клубка.

Предшественник расплавленной глобулы – происходит форми- рование неполной вторичной структуры, за счет взаимодействия всех функционально активных групп аминокислот, кроме радикалов. Цепь принимает определенную пространственную структуру, но частично развер- нута.

Расплавленная глобула – вторичная структура сформирована; на- чинается сжатие цепи в компактную глобулу за счет взаимодействий между радикалами, но окончательно сформированных связей еще нет. Радикалы взаимодействуют с «кем попало», выбирая наиболее правильные позиции. Конфигурация глобулы неустойчива. Жесткой третичной структуры еще нет.

Нативный белок – связи в расплавленной глобуле установились: ра-

дикалыобразовали максимально возможное количество связей: белок нахо- дит оптимально выгодную структуру.

У олигомерных белков фолдинг завершает связывание протомеров в олигомеры.

По времени фолдинг одних белков начинается на стадии трансляции синтеза белка и проходит по мере его роста на рибосоме. Такой фолдинг называется ко-трансляционным. Для других он начинается после завершения трансляции и называется посттрансляционным.

Фолдинг небольших молекул белка определяется первичной структурой данного белка, то есть, последовательностью аминокислот в пептидной цепи, на основе только физико-химических взаимодействий своих химических групп (в частности радикалов). Это подтверждается экспериментом с рибонуклеазой, проведенным К. Анфинсеном в 1973г.

Рибонуклеаза – глобулярный белок, расщепляющий связи между нуклеотидами в РНК. Он состоит из 124 аминокислот, среди которых 8 остатков цистеина образуют 4 дисульфидные связи: 26-84; 40-95; 58-110 и 65-72 (цифры указывают номер остатков цистеина в цепи) (рис.32).


Рис.32. Денатурация и ренативация рибонуклеазы. А – нативная молекула рибонуклеазы, в третичной структуре которой имеются 4 дисульфидные связи; Б – денатурированная молекула рибонуклеазы; В – нативная молекула рибонулеазы, в структуре которой вновь образованы 4 дисульфидные связи между теми же остатками цистеина

Если в среду с рибонуклеазой внести мочевину, (разрывающую водородные связи) и β-меркаптоэтанол (разрывающий дисульфидные связи), то глобулярная нативная структура белка разрушается (денатурация ) и пептидная цепь образует случайный клубок – случайным образом свернутая пептидная цепь в первичной структуре. Ферментативная активность исчезает в связи с разрушением активного центра; белок находится в состоянии, какое он имел до фолдинга. Затем, если оба агента удалить из среды, то восстанавливается нативная структура и фермен- тативная активность белка. Таким образом, происходит ренатурация (восстановление денатурированной структуры белка), ренативация или рефолдинг . Следовательно, строго определенная конформация белка заключена в первичной структуре и для небольших белков определяется только физико-химическим взаимодействием своих химических групп. Белок не только «знает», какую пространственную конфигурацию принять, но и делает это вполне самостоятельно, без дополнительных агентов.

На образование третичной структуры белка могут влиять его лиганды, а также химическая модификация аминокислот.

Фолдинг крупных молекул имеет свои особенности. Так, крупные молекулы белков с большим молекулярным весом и сложной структурой в процессе фолдинга в условиях высокой концентрации белков в клетке могут взаимодействовать друг с другом, за счет своих реакционно-способных радикалов. Гидрофобные радикалы на поверхности молекул склонны к объединению (агрегации), что нарушает ход их правильного фолдинга. Поэтому на время фолдинга реакционноспособные аминокислотные остатки одних белков должны быть отделены от аминокислотных остатков других белков. Эту функцию выполняют вспомогательные белки . Они связываются с белками, находящимися в неустойчивом, склонном к агрегации, состоянии, стабилизируют их конформацию и обеспечивают их «правильный» фолдинг.

Такие белки называются факторами фолдинга и делятся на две групппы: фолдазы и шапероны .

Потрясающую игру разработали учёные из Вашингтонского университета (США). Программа под названием Fold.it представляет собой модель сворачивания белков в трёхмерные конструкции. Геймер должен попытаться сделать это наиболее удачным образом. В программу будут загружаться реальные данные о настоящих, только что изобретённых протеинах, которые непонятно как сворачиваются. Результаты отправятся через интернет в центр обработки, где их проверят на суперкомпьютере (это будет с осени, а пока что в программу заложены уже решённые загадки, так что сейчас она выполняет роль тренажёра).

В самом деле, все геймеры нашего мира тратят миллиарды человеко-часов на бесполезные для человечества игры типа WoW, Counter-Strike или пасьянса «Косынка». В то же время они могли бы использовать интеллект более эффективно: например, сворачивая белки на экране своего монитора. Это ведь тоже по-своему интересно.

Один из разработчиков игры, профессор биохимии Дэвид Бейкер, искренне верит, что где-то в мире живут таланты, у которых есть врождённая способность просчитывать в уме 3D-модели протеинов. Какой-нибудь 12-летний мальчик из Индонезии увидит игру и сможет решить задачи, которые не под силу даже суперкомпьютеру. Кто знает, может, такие люди действительно есть?

Каждый протеин (в человеческом теле их более 100 000 видов) представляет собой длинную молекулу. Предсказать, в какую замысловатую форму свернётся эта молекула в тех или иных условиях (и способна ли она вообще свернуться в какую-либо устойчивую форму) - задача высшей степени сложности. Компьютерное моделирование представляет собой ресурсоёмкий процесс, но в то же время критически важный в фармацевтике. Ведь не зная формы белка невозможно смоделировать его свойства. Если же эти свойства являются полезными, то протеины можно синтезировать и на их базе сделать новые эффективные препараты, например, для лечения рака или СПИДа (Нобелевская премия гарантирована в обоих случаях).

В настоящее время над обсчитыванием модели каждой новой молекулы белка трудятся сотни тысяч компьютеров в распределённой вычислительной сети , однако ученые из Вашингтонского университета предлагают другой способ: не тупой перебор всех вариантов, а интеллектуальный мозговой штурм через компьютерную игру. Количество вариантов сокращается на порядок, а суперкомпьютер гораздо быстрее найдёт правильные параметры фолдинга.

В трёхмерную «развлекалку» Fold.it могут играть все: даже дети и секретарши, которые понятия не имеют о молекулярной биологии. Разработчики постарались сделать такую игру, чтобы она была интересна каждому. А результат игры вполне может стать основой для Нобелевской премии и спасти жизни тысяч людей.

Программа выпущена в версиях под Win и Mac. Дистрибутив размером 53 МБ можно