В чем суть термоэлектронной эмиссии. В чем состоит явление термоэлектронной эмиссии? В работе каких известных Вам приборов используют это явление? Смотреть что такое "Термоэлектронная эмиссия" в других словарях

Электрический ток в вакууме создаётся направленным движением электронов, испускаемых металлом путём термоэлектронной эмиссии (испускания электронов с поверхности нагретого до высокой температуры металла). Для выхода из металла, электрон должен преодолеть потенциальный барьер вблизи его поверхности. Работа по преодолению этого барьера называется работой выхода электрона из металла. Для совершения этой работы, электрон должен иметь определённую энергию. Эту энергию электрон получает при нагревании металла.

напряжение на катоде измеряется вольтметром U K .Напряжения U K и U A регулируются переменными сопротивлениями R K и R A , токи в цепях катода и анода регистрируются амперметрами I K и I A соответственно. Катод имеет меньший потенциал по отношению к аноду. Катод и анод находятся внутри (обычно) стеклянного баллона, в котором создаётся высокий вакуум.

часть вышедших из катода термоэлектронов достигают анода даже в отсутствии напряжения между катодом и анодом. Для прекращения тока через диод необходимо приложить встречное поле, препятствующее движению электронов. Это поле создаётся напряжением запирания U з .

В средней части вольтамперной характеристики зависимость анодного тока от приложенного напряжения описывается уравнением:



Это уравнение было теоретически получено Богуславским и Лэнгмюром и называется законом трёх вторых , носящим имя этих учёных. Коэффициент С в этом уравнении равен:

Здесь e/m удельный заряд электрона, g - постоянная для данного диода величина, характеризующая его геометрию.

При увеличении напряжения между катодом и анодом ток через диод увеличивается и достигает тока насыщения I н . Существование тока насыщения означает, что при данной интенсивности поля (при данном напряженииU A ) и температуре катода Т все электроны, вышедшие из катода, достигают анода. Зависимость тока насыщения от температуры катода описывается формулой:

Здесь А в работа выхода электрона из металла, k – постоянная Больцмана, В - постоянная величина.

Изучение вольтамперной характеристики диода при разных температурах катода позволяет определить удельный заряд электрона e/m и работу выхода А в электронов из металла.

ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ, испускание электронов нагретой поверхностью. Еще до 1750 было известно, что вблизи нагретых твердых тел воздух теряет свое обычное свойство плохого проводника электричества. Однако причина этого явления оставалась неясной до 1880-х годов. В ряде опытов, проведенных в период 1882–1889, Ю.Эльстер и Г.Гейтель установили, что при пониженном давлении окружающего воздуха раскаленная добела металлическая поверхность приобретает положительный заряд. Об аналогичных наблюдениях упоминалось в патентной заявке Т.Эдисоном (1883); он ввел электрод в одну из своих первых ламп накаливания и обнаружил, что между ее нитью и электродом происходит перенос электрического заряда. Этот «эффект Эдисона», как его иногда называют, лег в основу британского патента (1905) Дж.Флеминга на «прибор для преобразования переменного тока в постоянный» – первую электронную лампу, открывшую век электроники. То, что данное явление связано с испусканием электронов (отрицательно заряженных частиц), продемонстрировал в 1890 Дж.Томсон.

Теорию термоэлектронной эмиссии разработал в 1902 О.Ричардсон; в более позднем ее варианте ток с единицы поверхности нагретого металла, находящейся при однородной абсолютной температуре Т , определяется формулой

гдеА – постоянный множитель, k – постоянная Больцмана, а W – работа выхода, характерная для данного металла, но зависящая от состояния его поверхности; она равна минимальной энергии, необходимой для удаления электрона с поверхности металла. В 1927 С.Дэшман вывел формулу Ричардсона на основе квантовой механики и установил, что множитель A имеет вид

где m и e – масса и заряд электрона, а h – постоянная Планка. На практике величина А может заметно отличаться от даваемой этой формулой, если не обеспечено строгое выполнение условий, при которых выведена последняя. Так, если испускающая электроны поверхность не идеально однородна, на ней будут «пятна» с температурой, превышающей среднюю. Эмиссия электронов из этих «пятен» более интенсивна, и полный ток может оказаться гораздо больше теоретического для идеального случая.

Эмиссия электронов остается незначительной, пока Т не достигнет значения W /k . Поэтому в целях снижения потерь тепла и расхода энергии большие усилия были направлены на создание поверхностей с возможно более низкой работой выхода. В современных электронных лампах почти всегда применяются оксидные катоды, в которых достигается оптимальный компромисс между низкой работой выхода, стоимостью, долговечностью и механической прочностью.

ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ -испускание электронов нагретыми телами (эмиттерами) в вакуум или др. среду. Выйти из тела могут только те электроны, энергия к-рых больше энергии покоящегося вне эмиттера электрона (см. Работа выхода ).Число таких электронов (обычно это электроны с энергиями 1 эВ относительно ферми-уровня в эмиттере) в условиях термодинамич. равновесия в соответствии с Ферми-Дирака распределением ничтожно мало при темп-pax T 300 К и экспоненциально растёт с T . Поэтому ток T. э. заметен только для нагретых тел. Вылет электронов приводит к охлаждению эмиттера. При отсутствии "отсасывающего" электрич. поля (или при малой его величине) вылетевшие электроны образуют вблизи поверхности эмиттера отрицательный пространств. , ограничивающий ток T. э.

Основные соотношения . При малых напряжениях V между эмиттером и анодом плотность тока моноэнергетич. электронов описывается известной ф-лой (закон трёх вторых) j ~ V 3/2 (см. Ленгмюра формула); учёт разброса скоростей электронов, преодолевающих созданный пространств. зарядом потенц. барьер, значительно усложняет ф-лу, но характер зависимости j(V )не изменяется; при увеличении V пространств. заряд рассасывается и ток достигает насыщения j 0 , а при дальнейшем росте V ток слабо растёт в соответствии с Шоттки эффектом (рис.)- В сильных (E > 10 6 В/см) электрич. полях к T. э. добавляется автоэлектронная эмиссия (термоавтоэлектронная эмиссия).

Выражение для плотности тока насыщения j 0 в силу принципа детального равновесия может быть получено путём расчёта потока электронов из вакуума в эмиттер. В условиях термодинамич. равновесия этот поток должен совпадать с потоком электронов, вылетающих в вакуум. В предположении, что поверхность эмиттера однородна, внеш. поле мало, а коэф. отражения электронов от поверхности эмиттера в вакууме r в области энергий ~ kT вблизи уровня вакуума слабо зависит от энергии и не слишком близок к единице, такой расчёт приводит к ф-ле (ф о рм у л а Р и ч а р д с о н а - Д е ш м а н а)

Здесь A=A 0 (1-) (черта над r означает усреднение по энергиям электронов), A 0 = 4pek 2 m e /h= 120,4 А/см 2. К 2 , F - электрона. Предположение о слабой зависимости r от энергии нарушается лишь в исключительных (но всё же реальных) случаях, когда уровень вакуума попадает внутрь одной из запрещённых зон в электронном спектре твёрдого тела или соответствует к--л. др. особенностям в спектрах объёмных и поверхностных состояний. Работа выхода металлов слабо зависит от темп-ры (вследствие теплового расширения); обычно эта зависимость линейная: F = F 0 + aT , a~10 -4 -10 -5 эВ/град; причём коэф. a может быть как положителен, так и отрицателен. По этой причине, однако, определяемые путём построения графика зависимости j 0 /T 2 от 1/T в полулогарифмич. координатах (метод прямых Ричардсона) величины отличаются от F и А из ф-лы (*). Для большинства чистых металлов найденные т. о. значения А изменяются от 15 до 350 А/см 2. К 2 .

Влияние примесей и дефектов . Поверхностные примеси и дефекты даже при малой их концентрации (10 монослоя) могут оказывать значит. влияние на термоэмиссионные свойства металлов и и приводят к заметному разбросу значений работы выхода (0,1 эВ). К числу таких эмиссионно активных примесей относятся, напр., атомы щелочных и щёлочно-земельных элементов и их окислы. Возникающая при адсорбции атомов и молекул квантовохим. связь индуцирует перераспределение зарядов между адсорбируемыми атомами (а д а т о м а м и) и собственными поверхностными атомами эмиттера. На больших расстояниях от адатома создаваемый этими зарядами потенциал может быть описан в терминах муль-типольного разложения, т. е. в виде суммы дипольного, квадрупольного и т.д. потенциалов. Изменение работы выхода (дипольный скачок потенциала) определяется ди-польными моментами DФ = 4peN s d , где N s - поверхностная концентрация адатомов, d -дипольный момент. При значениях d порядка неск. Д (1 Д=10 -18 ед. СГСЕ) уже малые кол-ва примесей (N 5 10 12 -10 13 см -2), составляющие всего 0,1-0,01 монослойного покрытия, приводят к заметным изменениям работы выхода: DF~10 -2 - 10 -1 эВ. Эмиссионно активные примеси как раз и характеризуются высокими значениями d~ 1-10 Д; рекордные значения d ~ 10 Д соответствуют адсорбции цезия. Изменение работы выхода описывает усреднённое вдоль поверхности изменение потенциала. Микроскопич. структура индуцируемого адатомами вблизи поверхности потенциала сложна. В частности, на нек-рой части поверхности существует потенц. барьер, затрудняющий вылет в вакуум электронов с энергиями, близкими к пороговым. Однако в большинстве случаев d ~ 1 Д и при таких d барьеры туннельно проницаемы - "прозрачны". В этих случаях изменения связаны с квантовомеханич. рассеянием и электронов. Примеси и дефекты могут стимулировать перестройку поверхности, что также влияет на эмиссионные свойства. Кроме адсорбции примесных атомов на поверхности, источниками её загрязнения могут служить процессы сегрегации и поверхностной , весьма эффективные при повыш. темп-pax. Для устранения неконтролируемого влияния загрязняющих примесей и получения воспроизводимых результатов при изучении эмиссионных свойств поверхностей необходимо производить измерения в условиях сверхвысокого вакуума ~10 -9 - 10 -10 мм рт. ст. (поток атомов из газовой среды на поверхность, создающий за 1 с монослойные покрытия, соответствует при комнатной темп-ре давлению ~ 10 -6 мм рт. ст.); при этом необходим контроль за составом и структурой поверхности с помощью совр. методов спектроскопии поверхности. Наилучшие объекты для изучения механизмов эмиссии - отд. грани монокристаллов переходных металлов, допускающие высокую степень очистки и отличающиеся высоким совершенством структуры поверхности.

Потенциал сил изображения (ПСИ), не являющийся элек-тростатич. потенциалом и не удовлетворяющий Пуассона уравнению в вакууме, описывает потенц. энергию взаимодействия электрона с эмиттером. ПСИ даёт заметный вклад в работу выхода (1 эВ) и проявляется обычно на расстояниях от поверхности z100 А. Его особые свойства связаны с "кулоновским" видом зависимости от координат V ~z -1 (вплоть до расстояний от поверхности порядка межатомных). Движение электрона в поле такого потенциала оказывается существенно квантовым. При этом ввиду формальной аналогии анализ решений соответствующего ур-ния Шрёдингера и свойства самих решений близки к случаю обычного 3-мерного кулоновского потенциала. В частности, если электрон не может проникнуть внутрь эмиттера (в силу отсутствия там объёмных состояний с соответствующей энергией), то ПСИ индуцирует поверхностные состояния с кулоновоподобным спектром (состояния ПСИ). Если же электрон может покинуть уровень в результате того или иного процесса, но вероятность этого события мала (как это часто бывает в действительности), то поверхностные состояния становятся резонансными, а уровни энергии приобретают конечную ширину. Электроны, находящиеся в непрерывном спектре, двигаясь над потенц. ямой, "чувствуют" наличие в ней уровня связанного состояния с малой по сравнению с глубиной ямы энергией связи, если их энергия невелика (сравнима с глубиной залегания уровня). В таком случае электрон за счёт эффектов многократного надбарьерного отражения может эффективно захватываться в область действия потенциала и рассеяние приобретает резонансный характер. Это явление приводит к резонансным осцил-ляциям в зависимости коэф. отражения от внеш. поля. Вероятность выхода в вакуум электрона, двигающегося изнутри твёрдого тела к его поверхности, связана с коэф. отражения соотношениями унитарности, являющимися квантовым аналогом принципа детального равновесия и обеспечивающими закон сохранения числа частиц. Поэтому в полевой зависимости тока T. э. также наблюдаются слабые (но всё же заметные) . В пределе слабых полей величина r и зависимость r от энергии существенно обусловлены видом потенциала.

Если потенциал достаточно быстро (быстрее, чем z -2) стремится к своему асимптотич. значению, то r стремится к единице, а вероятность выхода электрона в вакуум обращается в нуль по закону e | 1/2 вблизи порога эмиссии (e | - часть энергии электрона относительно уровня вакуума, соответствующая движению электрона по нормали к поверхности, иначе говоря, нормальная компонента полной энергии электрона). В случае медленноизменяющихся с z потенциалов, к к-рым относится и ПСИ, их наличие не привносит дополнит. особенностей в энергетич. зависимость r вблизи уровня вакуума. Поэтому величина (1-r )из ф-лы (*) в большинстве случаев оказывается не слишком малой. Лишь в случаях, когда эмиссия осуществляется в среду с малой характерной длиной экранирования поля, не превышающей величин <= 100 (обычных для области действия ПСИ), r оказывается близким к единице.

Термоэлектронная эмиссия из полупроводников . Ф-ла (*) применима и для описания T. э. из полупроводников. Однако влияние темп-ры, электрич. поля, примесей в эмиттере и т. п. на эмиссионный ток и на величины F и А в этом случае существенно иное по сравнению с металлами. Различия обусловлены малой концентрацией электронов проводимости и наличием локализованных поверхностных электронных состояний, влияющих на расположение уровня Ферми на поверхности полупроводника, вплоть до его "закрепления" в нек-рой точке запрещённой зоны (см. Поверхностные состояния, Поверхность) . При этом на поверхности полупроводника и F почти (с точностью до величин ~0,1 эВ) не зависят от в объёме (т.е. от типа и концентрации легирующей примеси). Такое закрепление связано с поверхностными состояниями достаточно большой (>=10 12 см -2) концентрации, индуцированными в основном собств. дефектами кристалла, возникающими при воздействии на полупроводник разл. внеш. факторов, таких, как адсорбция, механич., термич. обработка и др. В этом случае характер T. э. аналогичен T. э. из металлов.

На достаточно чистых и совершенных поверхностях полупроводников плотность собственных (заполненных и пустых) поверхностных состояний в запрещённой зоне невелика и уровень Ферми на поверхности может перемещаться внутри запрещённой зоны, следуя за его положением в объёме. Поэтому при изменении типа и концентрации примесей в объёме полупроводника изменяются F и ток T. э. Кроме того, электрич. поле в таких полупроводниках не экранируется зарядами поверхностных состояний и проникает в эмиттер на значит. глубину, что приводит к изменению F за счёт приповерхностного изгиба зон и к разогреву полем.

Аналогичная ситуация возникает и в том случае, когда внеш. поле превышает величину, достаточную для устранения экранирующего влияния поверхностных состояний. По этим причинам отбор тока эмиссии из полупроводников (в отличие от металлов, где эти эффекты обычно малы) может приводить к значит. нарушению термодинамич. равновесия. Особая ситуация возникает при эмиссии из систем с отрицат. электронным сродством (см. Фотоэлектронная эмиссия) , в к-рых неравновесный характер процессов эмиссии (в т. ч. и T. э.) обусловлен изначальными особенностями приповерхностной энергетич. структуры эмиттеров.

Влияние неоднородностей . Поверхность большинства эмиттеров неоднородна, на ней существуют "пятна" с разной работой выхода. Между ними возникает Df и электрич. поля (поля пятен) величиной ~Df/R (где R - характерный размер неоднородностей). Эти поля создают дополнит. потенц. барьеры для эмитируемых электронов, что приводит к более сильной зависимости тока от анодного напряжения (аномальный эффект Шоттки), а также увеличивает зависимость тока от T . Поскольку размеры неоднородностей обычно не малы, >> 100, а значения разности потенциалов между соседними пятнами ~0,1 - 1 эВ, то типичные величины полей пятен не велики (~10 4 В/см или меньше) и требуют для своего "раскрытия" относительно малых (по сравнению со случаем нормального эффекта Шоттки) внеш. полей, с чем и связана большая величина (аномальность) эффекта в случае неоднородных поверхностей.

Если поверхность сильно неоднородна, так что размеры эмиссионно активных пятен r значительно меньше расстояний между ними, то потенциал f отд. пятна на расстояниях r от него может быть представлен в виде суммы дипольного, квадрупольного и т. д. слагаемых. В частности, зависимость поля пятна от расстояния до поверхности z над центром пятна в этом случае близка к степенной. Последнее обстоятельство (в полной аналогии с нормальным эффектом Шоттки) приводит к степенной или близкой к ней зависимости величины снижения потенц. барьера над центром пятна Df от внеш. поля E (напр., в случае чисто дипольного потенциала f~z -2 и Df~E 2/3). В реальных условиях зависимость потенциала от координат более сложна, однако качественно факторы, определяющие вид полевой зависимости тока в условиях аномального эффекта Шоттки, остаются теми же. Кроме того, всегда существует разброс значений параметров неоднородностей, а в нек-рых случаях (напр., для эмиттеров, приготавливаемых из мелкодисперсных порошков) иерархия размеров может быть весьма богатой (от 100 до 10-100 мкм). При этом с ростом поля происходит поочерёдное раскрытие полей пятен, что значительно расширяет полевой диапазон проявления аномального эффекта Шоттки.

Виды термоэмиттеров . К числу наиб. известных эфф. эмиттеров относятся окислы щёлочно-земельных, редкоземельных и др. элементов, обычно используемые в виде смесей с различными (в зависимости от назначения катода) добавками (см. Термоэлектронный катод) . Самым популярным является катод на основе смеси окислов Ba, Ca и Sr - оксидный катод. Будучи соединениями с ярко выраженной ионной связью, окислы обладают относительно малым (<= 1 эВ) электронным сродством, широкой (порядка неск. эВ) запрещённой зоной и являются изоляторами при комнатных темп-pax. Для реализации высоких эмиссионных свойств используется процесс термообработки, во время к-рого происходят очистка поверхности, образование донорных центров, формирование структуры эмиттера и оптим. состава его поверхности. Доноры, к-рые в такого рода соединениях имеют, как правило, вакансионную природу, возникают в результате конкуренции между процессами и адсорбции атомов (происходящими при повыш. темп-pax в условиях относительно невысокого вакуума) с последующей диффузией вакансий в объём эмиттера, а также и в др. процессах. Возникающая нестехиометрия состава катода, особенно состава его приповерхностной области, значительна, но всё же не настолько, чтобы образовывались сплошные тонкослойные покрытия поверхности атомами металлов. Важную роль в формировании и работе катода играют процессы поверхностной диффузии атомов (в т. ч. и диффузия по границам зёрен). Они имеют обычно активац. характер; при этом энергия активации поверхностной диффузии (=< 1 эВ) заметно меньше, чем энергия активации объёмного процесса. Поэтому во мн. случаях поверхностная диффузия более эффективна. На контакте полупроводникового эмиссионного слоя с металлом подложки (керном) существует барьер контактной разности потенциалов - , к-рый "включён" в запирающем направлении и при отборе тока эмиссии препятствует транспорту электронов из металла в эмиссионный слой. Кроме того, из-за хим. реакций, протекающих в этой области при повыш. темп-pax (особенно при наличии в металле нежелат. примесей), возможно образование диэлектрич. прослойки между металлом и эмиссионным слоем, значительно ухудшающей свойства катода и приводящей к быстрой его деградации. Поэтому одна из задач, возникающая при создании эмиттера,- формирование хорошего контакта эмиссионного слоя с керном, сохраняющего свои свойства при работе катода. В отличие от технологий мн. др. приборов, в к-рых для создания омического контакта предпринимаются спец. меры, в оксидном катоде формирование контакта происходит в процессе термообработки заодно с др. процессами и не требует дополнит. операций. Иногда в материал контакта вводятся спец. активные присадки, способствующие образованию донорных центров в процессе термообработки. Эфф. термокатоды отличаются от др. эмиттеров прежде всего низкими значениями работы выхода. Достигнутые значения этой величины группируются ок. ~ 1 эВ, а дальнейшие усилия в направлении уменьшения работы выхода наталкиваются на серьёзные трудности. В связи с этим возникает вопрос о существовании факторов, препятствующих снижению работы выхода до величин, значительно меньших 1 эВ. К числу таких факторов могло бы относиться существование незаполненных поверхностных состояний (в частности, состояний ПСИ), накопление заряда на к-рых ограничивает возможность уменьшения Ф. Среди термокатодов др. типов можно назвать металлич. катоды (особенно вольфрамовые) и катоды из полуметаллов, напр. из гексаборида лантана, используемые для создания электронных пучков с повышенной плотностью тока.

Термоэлектронные катоды применяют во многих электровакуумных и газоразрядных приборах, в науч. и технол. установках.

Лит.: Fоменко В. С., Эмиссионные евойства материалов, 4 изд., К., 1981; Добрецов Л. H., Гомоюнова M. В., Эмиссионная электроника, M., 1966; Термоэлектронные катоды, M.- Л., 1966. С. Г. Дмитриев .

Термоэлектронная эмиссия является одним из видов эмиссии электронов поверхностью твердого тела. В случае термоэлектронной эмиссии внешнее воздействие связано с нагреванием твердого тела.

Явлением термоэлектронной эмиссии называется испускание электронов нагретыми телами (эмиттерами) в вакуум или другую среду.

В условиях термодинамического равновесия число электронов n (Е) , имеющих энергию в интервале отЕ доЕ +d Е , определяется статистикой Ферми-Дирака:

, (1)

где g (Е) – число квантовых состояний, соответствующих энергииЕ ;Е F – энергия Ферми;k – постоянная Больцмана;Т – абсолютная температура.

На рис. 4 показаны энергетическая схема металла и кривые распределения электронов по энергиям при Т =0 К, при низкой температуреТ 1 и при высокой температуреТ 2 . При 0 К энергия всех электронов меньше энергии Ферми. Ни один из электронов покинуть кристалл не может и никакой термоэлектронной эмиссии не наблюдается. С увеличением температуры возрастает число термически возбужденных электронов, способных выйти из металла, что обусловливает явление термоэлектронной эмиссии. На рис. 4 это иллюстрируется тем, что приТ=Т 2 "хвост" кривой распределения заходит за нулевой уровень потенциальной ямы. Это свидетельствует о появлении электронов, обладающих энергией, превышающей высоту потенциального барьера.

Для металлов работа выхода составляет несколько электрон-вольт. Энергия k Т даже при температуре в тысячи Кельвинов составляет доли электрон-вольт. Для чистых металлов значительная эмиссия электронов может быть получена при температуре порядка 2000 К. Например, в чистом вольфраме заметную эмиссию можно получить при температуре 2500 К.

Для исследования термоэлектронной эмиссии необходимо создать у поверхности нагретого тела (катода) электрическое поле, ускоряющее электроны для их удаления (отсасывания) от поверхности эмиттера. Под действием электрического поля эмиттированные электроны приходят в движение и образуется электрический ток, который называется термоэлектронным . Для наблюдения термоэлектронного тока обычно используют вакуумный диод – электронную лампу с двумя электродами. Катодом лампы служит нить из тугоплавкого металла (вольфрама, молибдена и др.), накаливаемая электрическим током. Анод обычно имеет форму металлического цилиндра, окружающего накаливаемый катод. Для наблюдения термоэлектронного тока диод включают в цепь, изображенную на рис. 5. Очевидно, что сила термоэлектронного тока должна расти с увеличением разности потенциаловV между анодом и катодом. Однако это возрастание идет не пропорциональноV (рис. 6). По достижении определенного напряжения нарастание термоэлектронного тока практически прекращается. Предельное значение термоэлектронного тока при данной температуре катода называется током насыщения. Величина тока насыщения определяется количеством термоэлектронов, которые в состоянии выйти с поверхности катода за единицу времени. В этом случае все электроны, поставляемые в результате термоэлектронной эмиссии из катода, задействованы для образования электрического тока.

Сегодня в фокусе внимания термоэлектронная эмиссия. Рассматриваются варианты названия эффекта, его проявление в среде и в вакууме. Исследуются температурные пределы. Определяются зависимые составляющие плотности тока насыщения термоэлектронной эмиссии.

Названия эффекта термоэлектронной эмиссии

Термин «термоэлектронная эмиссия» имеет и другие названия. По именам ученых, которые открыли и впервые исследовали это явление, он определяется как эффект Ричардсона или эффект Эдисона. Таким образом, если человеку в тексте книги встретятся эти два словосочетания, он должен помнить, что подразумевается все тот же физический термин. Путаницу внесло разногласие между публикациями отечественных и зарубежных авторов. Советские физики стремились давать законам поясняющие определения.

Термин «термоэлектронная эмиссия» содержит в себе суть явления. Человеку, который видит это словосочетание на странице, сразу понятно, что речь идет о температурном испускании электронов, только остается за кадром, что происходит это непременно в металлах. Но для того и существуют определения, чтобы раскрывать детали. В зарубежной науке очень щепетильно относятся к первенству и авторскому праву. Поэтому ученый, который смог зафиксировать нечто, получает именное явление, а бедные студенты должны фактически наизусть заучивать фамилии первооткрывателей, а не только суть эффекта.

Определение термоэлектронной эмиссии

Явление термоэлектронной эмиссии состоит в том, что из металлов при высокой температуре выходят электроны. Таким образом, нагретое железо, олово или ртуть являются источником этих элементарных частиц. Механизм строится на том, что в металлах существует особая связь: кристаллическая решетка положительно заряженных ядер является как бы общей базой для всех электронов, которые образуют облако внутри структуры.

Таким образом, среди отрицательно заряженных частиц, которые находятся вблизи поверхности, всегда найдутся такие, у которых достаточно энергии, чтобы покинуть объем, то есть преодолеть потенциальный барьер.

Температура эффекта термоэлектронной эмиссии

Благодаря металлической связи вблизи поверхности любого металла найдутся электроны, у которых достаточно сил для преодоления потенциального барьера выхода. Однако из-за этого же разброса энергий одна частица едва отрывается от кристаллической структуры, а другая вылетает и преодолевает некоторое расстояние, ионизируя среду вокруг себя. Очевидно, что чем больше кельвинов в среде, тем больше электронов приобретают способность покинуть объем металла. Таким образом, встает вопрос о том, какова температура термоэлектронной эмиссии. Ответ непрост, и рассматривать мы будем нижнюю и верхнюю границы существования этого эффекта.

Температурные пределы термоэлектронной эмиссии

Связь позитивных и негативных частиц в металлах обладает рядом особенностей, среди которых очень плотное распределение энергий. Электроны, являясь фермионами, занимают каждый свою энергетическую нишу (в отличие от бозонов, которые способны находиться все в одном состоянии). Несмотря на это, разница между ними настолько мала, что спектр может считаться непрерывной, а не дискретной величиной.

В свою очередь это приводит к большой плотности состояний электронов в металлах. Однако даже при очень низких температурах, близких к абсолютному нулю, (напомним, это ноль кельвинов, или примерно минус двести семьдесят три градуса по Цельсию) будут находиться электроны с большей и меньшей энергией, так как все они одновременно не смогут быть в низшем состоянии. Значит, при определенных условиях (тонкая фольга) очень редко выход электрона из металла будет наблюдаться даже при экстремально низких температурах. Таким образом, нижним пределом температуры термоэлектронной эмиссии может считаться значение, близкое к абсолютному нулю.

С другой стороны температурной шкалы стоит плавление металла. Согласно физико-химическим данным, у всех материалов этого класса данная характеристика различается. Иными словами, металлов с одинаковой температурой плавления не существует. Ртуть или жидкость при нормальных условиях переходит из кристаллической формы уже при минус тридцати девяти градусах Цельсия, тогда как вольфрам - при трех с половиной тысячах.

Однако все эти пределы роднит одно – металл перестает быть твердым телом. А значит, законы и эффекты меняются. И говорить о том, что в расплаве существует термоэлектронная эмиссия, не приходится. Таким образом, верхним пределом этого эффекта становится температура плавления металла.

Термоэлектронная эмиссия в условиях вакуума

Все рассмотренное выше относится к явлению в среде (например, на воздухе или в инертном газе). Теперь обратимся к вопросу, что такое термоэлектронная эмиссия в вакууме. Для этого опишем простейший прибор. В колбу, из которой откачали воздух, помещают тонкий стержень из металла, к которому подводят отрицательный полюс источника тока. Заметим, что материал должен плавиться при достаточно высоких температурах, чтобы во время эксперимента не потерять кристаллическую структуру. Полученный таким образом катод окружают цилиндром из другого металла и подсоединяют к нему положительный полюс. Естественно, анод тоже находится в заполненном вакуумом сосуде. При замыкании цепи получаем ток термоэлектронной эмиссии.

Примечательно то, что в этих условиях зависимость тока от напряжения при не меняющейся температуре катода подчиняется не закону Ома, а закону трех вторых. Еще он назван именем Чайлда (в других версиях Чайлда-Ленгмюра и даже Чайлда-Ленгмюра-Богуславского), а в немецкоязычной научной литературе – уравнением Шоттки. При увеличении напряжения в такой системе в определенный момент все электроны, вырываемые из катода, достигают анода. Это называется током насыщения. На вольт-амперной характеристике это выражается в том, что кривая выходит на плато, и дальнейшее увеличение напряжения не эффективно.

Формула термоэлектронной эмиссии

Таковы особенности, которыми обладает термоэлектронная эмиссия. Формула достаточно сложная, поэтому приводить её здесь не будем. К тому же её легко найти в любом справочнике. Вообще, формулы термоэлектронной эмиссии как таковой не существует, рассматривают только плотность тока насыщения. Эта величина зависит от материала (который определяет работу выхода) и термодинамической температуры. Все остальные составляющие формулы – константы.

На основании термоэлектронной эмиссии работает множество приборов. Например, старые большие телевизоры и мониторы в основе имеют именно этот эффект.